Statistik Teori Dan Aplikasi Ebook Reader

Statistik Teori Dan Aplikasi Ebook Reader 3,1/5 6580 votes

Academia.edu is a platform for academics to share research papers. Download statistik teori dan aplikasi supranto for FREE. All formats available for PC, Mac, eBook Readers and other mobile devices. Download statistik teori dan aplikasi supranto.pdf. 13597.pdf - Koleksi Buku 1986 Supranto, J. Pengantar probabilita dan statistik induktif, jilid 2 / oleh J. Supranto 1986 Judul.

Subjects

Buku pengantar statistik asas ini disediakan secara khusus bagi membantu mahasiswa daripada universiti awam dan juga universiti swasta yang mengambil kursus asas dalam statistil. Gaya bahasa penulisan dan bab dalam buku pengantar statistik ini disusun dengan begitu rapi supaya mudah diikuti dan difahami oleh pelajar disamping dapat menarik minat para pelajar untuk lebih mendalami ilmu dalam bidang statistic gunaan. Selain itu, buku ini juga turut memberi tumpuan kepada perbincangan teori yang mendasari kepada sesuatukaedah yang dikaji. Aplikasi penggunaan teknologi dalam kaedah pembelajaran juga turut diterapkan kepada pelajar menerusi penggunaan perisian berkomputer, iaitu perisian SPSS dalam menganalisis data terhadap permasalahan yang dibincangkan. Free pst to eml converter. Secara ringkasnya, buku ini dapat juga membantu para pelajar untuk lebih memahami statistic secara teori dan juga aplikasi.

Publication Details

Format

Creators

Author :
Wan Muhamad Amir W Ahmad
Author :
Nor Azlida Aleng
Author :
Nurfadhlina Abd. Halim
Author :
Syerrina Zakaria
Publication: ICMLC 2017: Proceedings of the 9th International Conference on Machine Learning and ComputingFebruary 2017 Pages 268–271https://doi.org/10.1145/3055635.3056565
  • This alert has been successfully added and will be sent to:

    You will be notified whenever a record that you have chosen has been cited.

    To manage your alert preferences, click on the button below.

    Manage my Alerts

    Download boney m greatest hits rar software for win. Please log in to your account

  • Save to Binder
    Create a New Binder

Weighted Exponential Moving Average (WEMA) method is a new hybrid moving average method which combines the weighting factor calculation found in Weighted Moving Average method with Exponential Moving Average method. It had been proven on previous study that the method can give a better accuracy and robustness levels compared to other conventional moving average methods. Another study which combined the Weighted Moving Average method with Brown's Double Exponential Smoothing method had also been done. The proposed method is known as Brown's Weighted Exponential Moving Average (B-WEMA) method and had been proven to excel other conventional moving average methods in terms of the accuracy and robustness levels. In this study, we will try to compare WEMA and B-WEMA forecasting methods in time series analysis, especially in forecasting. We will implement both methods to forecast three major foreign exchange (forex) data transactions and compare the performance of both methods by using Mean Square Error and Mean Absolute Percentage Error criteria. From the experiments taken, it can be concluded that WEMA and B-WEMA have quite the same accuracy and robustness levels due to their slightly same MSE and MAPE values.

  1. Brockwell, P.J. and Davis, R.A. 2002. Introduction to Time Series and Forecasting, 2nd ed. Springer-Verlag, New York, 1--2.
  2. Dufour, J-M. 2008. Introduction to Time Series Analysis. Research Paper. McGill University, Canada.
  3. NIST/SEMATECH e-Handbook of Statistical Methods. Introduction to Time Series Analysis {Online}, retrieved on February 27, 2016. Available: http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc41.htm.
  4. Subanar and Suhartono. 2009. Wavelet Neural Networks untuk Peramalan Data Time Series Finansial. Program Penelitian Dasar Perguruan Tinggi. FMIPA Universitas Gadjah Mada, Yogyakarta.
  5. Boediono and Koster. 2001. Teori dan Aplikasi Statistika dan Probabilitas. PT. Remaja Rosdakarya, Bandung.
  6. Render, B., Stair Jr., R.M., and Hanna, M.E. 2003. Quantitative Analysis for Management, 8th ed. Pearson Education, Inc., New Jersey.
  7. Grebenkov, D.S. and Serror, J. 2014. Following a Trend with an Exponential Moving Average: Analytical Results for a Gaussian Model. Physica A, 394, 288--303.Cross Ref
  8. Klinker, F. 2011. Exponential Moving Average versus Moving Exponential Average. Math. Semesterber, 58, 1, 97--107.Cross Ref
  9. Abdullah, L. 2012. ARIMA Model for Gold Bullion Coin Selling Prices Forecasting. International Journal of Advances in Applied Sciences (IJAAS), 1, 4, 153--158.Cross Ref
  10. Suparman and Doisy, M. 2014. Hierarchical Bayesian of ARMA Models using Simulated Annealing Algorithm. TELKOMNIKA, 12, 1, 87--96.Cross Ref
  11. Alwee, R., Hj Shamsuddin, S.M., and Sallehuddin, R. 2013. Hybrid Support Vector Regression and Autoregressive Integrated Moving Average Models Improved by Particle Swarm Optimization for Property Crime Rates Forecasting with Economic Indicators. The Scientific World Journal, 2013.
  12. Fard, A.K. and Akbari-Zadeh, M-R. 2014. A Hybrid Method Based on Wavelet, ANN, and ARIMA Model for Short-term Load Forecasting. Journal of Experimental and Theoretical Artificial Intelligence, 26,2, 167--182.Cross Ref
  13. Thakur, A., Kumar, S., and Tiwari, A. 2015. Hybrid Model of Gas Prediction using Moving Average and Neural Network. In Proceedings of 1st International Conference on Next Generation Computing Technologies (NGCT). Dehradun, 735--737.
  14. Hansun, S. 2013. A New Approach of Moving Average Method in Time Series Analysis. In Proceedings of the 2013 IEEE International Conference on New Media (CoNMedia). Indonesia, 1--4.Cross Ref
  15. Hansun, S. 2014. A Novel Research of New Moving Average Method in Time Series Analysis. International Journal of New Media Technology, 1, 1,22--26.
  16. NIST/SEMATECH e-Handbook of Statistical Methods. Double Exponential Smoothing {Online}, retrieved on August 28, 2015. Available: http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc433.htm.
  17. Hansun, S. 2016. A New Approach of Brown's Double Exponential Smoothing Method in Time Series Analysis. Balkan Journal of Electrical & Computer Engineering, 4, 2, 75--78.Cross Ref
  18. Turn, J., Norton, P., and Wright, J.N. 2006. Management of Event Operations. Routledge, New York.
  19. Nau, R. Moving average and exponential smoothing models {Online}, retrieved on August 19, 2015. Available: http://people.duke.edu/~rnau/411avg.htm.
  20. Shcherbakov, M.V., Brebels, A., Shcherbakova, N.L., Tyukov, A.P., Janovsky, T.A., and Kamaev, V.A. 2013. A Survey of Forecast Error Measures. World Applied Sciences Journal 24, 171--176.
  21. Lawrence, K.D., Klimberg, R.K., and Lawrence, S.M. 2009. Fundamentals of Forecasting using Excel. Industrial Press, Inc., New York. Digital Library
  22. Hyndman, R.J. and Athanasopoulos, G. 2012. Forecasting: Principles and Practice {Online}, OTexts. Available: http://otexts.com/fpp.
  23. Forex Forum. GVI Forex Database: Free Forex Historical Data {Online}, retrieved on November 15, 2016 from http://www.global-view.com/forex-trading-tools/forex-history/index.html.
  1. WEMA versus B-WEMA Methods in Forex Forecasting
Please enable JavaScript to view thecomments powered by Disqus.

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    545 pages
    DOI:10.1145/3055635

    Copyright © 2017 ACM

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Permissions

    Request permissions about this article.

    Request Permissions

    Author Tags

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Funding Sources

  • Article Metrics

    • Total Citations
      View Citations
    • Total Downloads
    • Downloads (Last 12 months)16
    • Downloads (Last 6 weeks)2

    Other Metrics

PDF Format

eReader

Digital Edition

View this article in digital edition.

View Digital Edition